

ÇANKAYA UNIVERSITY

Department of Mathematics

MATH 105 - Business Mathematics I 2018-2019 Fall

FIRST MIDTERM EXAMINATION (SAMPLE EXAM)

STUDENT NUMBER:

NAME-SURNAME:

SIGNATURE:

INSTRUCTOR:

DURATION: 90 minutes

Question	Grade	Out of
1		
2		
3		
4		
5		
Total		

IMPORTANT NOTES:

- 1) Please make sure that you have written your student number and name above.
- 2) Check that the exam paper contains 5 problems.
- 3) Show all your work. No points will be given to correct answers without reasonable work.

1) Find the solution sets of the following expressions.

$$\mathbf{a)} \left| \frac{5x - 3}{2} \right| > 4$$

$$\frac{9\times -3}{2}$$
 74 $\frac{3-9\times}{2}$ 74 $\times e(-\infty, -1)$ U $\times e(-\infty, -1)$

b)
$$\frac{1}{x^2 - 16} = \frac{1}{x - 4} + \frac{1}{x + 4}$$

 $(x + 4)$ $(x - 4)$
 $x \neq 4$
 $x \neq -4$
 $1 = x + 4 + x - 4$
 $1 = 2x$
 $x = 1/2$

c)
$$\sqrt{x^2 - x - 5} - 2x = 3$$

 $(\sqrt{x^2 - x - 5})^2 = (3 + 2x)^2$
 $x^2 - x - 5 = 9 + 12x + 4x^2$
 $0 = 3x^2 + 13x + 14$
 $0 = (3x + 7)(x + 2)$
 $x = -\frac{7}{3}$ None of them so tisfies the eqn.

2) Let
$$f(x) = \frac{1}{x-2}$$
 and $g(x) = \sqrt{x-1}$.

a) Find (f-g)(4)

$$(f-g)(x) = \frac{1}{x-2} - \sqrt{x-1}$$

(2)
$$(f-g)(4) = \frac{1}{3} - \sqrt{3}$$

b) Find (fog)(x)

$$f\left(\sqrt{x-1}\right) = \frac{1}{\sqrt{x-1}-2}$$

c) Find (gof)(x)

$$3) g\left(\frac{1}{x-2}\right) = \sqrt{\frac{1}{x-2}-1}$$

d) Find Dom(g)

(4)
$$\sqrt{x-1}$$
 70 Dom(g) = [1, 66) \times 71

e) Find Dom(fog)(x)

$$(fog)(x) = \frac{1}{\sqrt{x-1}-2}$$

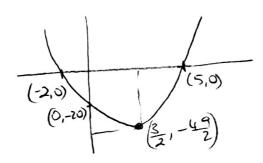
e) Find
$$Dom(gof)(x)$$
.

$$(9 \circ f)(x) = \sqrt{\frac{1}{x-2} - 1}$$

$$\sqrt{x-1} - 2 \neq 0$$
 and $x-17,0$
 $\sqrt{x-1} \neq 2$
 $x-1 \neq 4$
 $|x \neq 5|$ Dom $(f \circ g) = [1, \infty) - 55]$

$$\frac{3-x}{x-2}$$
 7,0 and $x \neq 2$

$$\frac{2}{-1+1} = \frac{3}{2}$$
 Dom(gof)=(2,3]


- 3) For the function $f(x) = 2x^2 6x 20$,
 - a) Find vertex, x-intercept and y-intercept points.
 - b) Find Domain(f) and Range(f).
 - c) Sketch the graph of the function.

a)
$$\left(\frac{6}{4}, f\left(\frac{3}{2}\right)\right) = \text{vertex}$$

 $\left(\frac{3}{2}, -\frac{\sqrt{9}}{2}\right)$

$$x - i \wedge t$$
. $y = 0$ $0 = 2x^2 - 6x - 20$
 $0 = 2(x - 5)(x + 2)$

$$y-int$$
; $x=0$ $f(0)=-20$

4) Find equation of a line passing through the point (-1,2) and perpendicular to the line 2x - 2y + 1 = 0.

Since perpendicular
$$M_1.M_2=-1$$

 $y-y_1=m(x-x_1)$
 $y-z=-1$ $(x+1)$
 $y=-x+1$

5) Solve the following equalities.

a)
$$5(e^{x+1}-1)=2$$

$$e^{X+1}-1=\frac{2}{5}$$

$$e^{X+1} = \frac{7}{5}$$

$$X = ln 7/5 - 1$$

b)
$$\log_2(\frac{x^2+x+5}{16}) = \log_2(4-x)-4$$

$$log_2\left(\frac{x^2+x+5}{16}\right)-log_2(4-x)=-4$$

$$log_2\left(\frac{x^2+x+5}{16(4-x)}\right) = -4$$

$$\frac{x^2+x-5}{16(4-x)}=2^{-4}$$

$$x^2 + x + 5 = 4 - x$$

$$x^2 + 2x + 1 = 0$$

$$x^{2}+2x+1=0$$
 $(x+1)^{2}=0$ $x=-1$

c)
$$\ln(x+6) - \ln(x-2) = \ln(x+1)$$

$$ln(x+6) = ln(x+1)(x-2)$$

$$x+b = (x+1)(x-2)$$

$$x + b = x^2 - x - 2$$

$$0 = x^2 - 2x - 8$$

$$[x=4]$$
 soln.