ÇANKAYA UNIVERSITY
Department of Mathematics

MATH 105-Business Mathematics I
2018-2019 Fall

FIRST MIDTERM EXAMINATION (SAMPLE EXAM)

STUDENT NUMBER:

NAME-SURNAME:
SIGNATURE:
INSTRUCTOR:
DURATION: 90 minutes

Question	Grade	Out of
1		
2		
3		
4		
5		
Total		

IMPORTANT NOTES:

1) Please make sure that you have written your student number and name above.
2) Check that the exam paper contains 5 problems.
3) Show all your work. No points will be given to correct answers without reasonable work.
4) Find the solution set of the following equations:
a) $(x-3)^{2}+5 x-11=0$
$x^{2}-6 x+9+5 x-11=0$
$x^{2}-x-2=0$
$(x-2)(x+1)=0$
$x=2 \quad x=-1$
b) $|2 x-5| \leq 3$
$-3 \leq 2 x-5 \leq 3$
$2 \leq 2 x \leq 8$
$1 \leq x \leq 4 \quad x \in[1,4]$.
c) $\frac{x}{\sqrt{x}+3}-\frac{\sqrt{x}}{\sqrt{x}-3}=\sqrt{x}+1$
$x(\sqrt{x}-3)-\sqrt{x}(\sqrt{x}+3)=(\sqrt{x}+1)(x-9)$
$x \sqrt{x}-3 x-x-3 \sqrt{x}=x \sqrt{x}+x-9 \sqrt{x}-9$
$5 x-6 \sqrt{x}-9=0$ if $t=\sqrt{x}$
$5 t^{2}-6 t-9=0$ then $t=\frac{6+\sqrt{216}}{10}$ and $t=\frac{6-\sqrt{216}}{10}$
But $t=\frac{6-\sqrt{216}}{10}$ negative so $x=\sqrt{\frac{6+\sqrt{216}}{10}}$
5) Let $f(x)=\frac{1}{\sqrt{x-1}}$ and $g(x)=\log (3 x-2)$ be two functions.
a) Find the domain of f.
$x>1$ so $\operatorname{Domf}:(1, \infty)$
b) Find the domain of g.
$3 x-2>0 \quad \Longrightarrow \quad x>\frac{2}{3}$ so Domg $:\left(\frac{2}{3}, \infty\right)$
c) Find $f \circ g(x)$.
$f \circ g(x)=f(g(x))=\frac{1}{\sqrt{g(x)-1}}=\frac{1}{\sqrt{\log (3 x-2)-1}}$
d) Find the domain of $f \circ g(x)$. (BONUS)
$\log (3 x-2)-1>0 \quad \log (3 x-2)>1 \quad 3 x-2>10 \quad x>4$
6) Find the equation of the line
a) passing through the points $(-3,5)$ and $(1,-3)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-3-5}{1-(-3)}=-2$
Equation of the line $y-y_{1}=m\left(x-x_{1}\right) \quad \Longrightarrow \quad y-5=-2(x-(-3)) \quad y=-2 x-1$
b) passing through the points $(3,-2)$ and parallel to the line $3 x-2 y=5$.

Since $y=\frac{3}{2} x-\frac{5}{2}$, slope of the line $3 x-2 y=5$ is $\frac{3}{2}$. So the slope of the line is also $\frac{3}{2}$.
Equation of the line $y-y_{1}=m\left(x-x_{1}\right) \Longrightarrow y-(-2)=\frac{3}{2}(x-3) \quad 2 y-3 x-13=0$
c) passing through the points $(-2,0)$ and perpendicular to the line $x+5 y=4$.

Since $y=\frac{-1}{5} x+\frac{4}{5}$, slope of the line $3 x-2 y=5$ is $\frac{-1}{5}$.
Since the lines are perpendicular $m \cdot \frac{-1}{5}=-1 \quad m=5$ so the slope of the line is 5 .
Equation of the line $y-y_{1}=m\left(x-x_{1}\right) \quad \Longrightarrow \quad y-0=5(x-(-2)) \quad y=5 x+10$.
4) Consider the function $y=-x^{2}+2 x-5$.
a) Find the vertex, x-intercept(s) and y-intercept(s). (If any)
vertex: $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right) \Longrightarrow \frac{-b}{a}=\frac{-2}{-2}=1$ and $f(1)=-4$. So vertex:(1,-4) y-intercept: $(0,-5)$
x-intercept: Since $b^{2}-4 a c=4-20=-16<0$ no x-intercept.
b) Find $\operatorname{Dom} f$ and Range f.
$\operatorname{Dom} f: \mathbb{R}$ and Range $f:(-\infty,-4]$
c) Sketch the graph.

5) Solve;
a) $\log _{x}(3-x)+\log _{x}(2+x)=2$.
$\log _{x}((3-x)(2+x))=2$
$(3-x)(2+x)=x^{2}$
$2 x^{2}-x-6=0 \quad \Longrightarrow \quad(x-2)(2 x+3)=0 \quad \Longrightarrow \quad x=2$ and $x=\frac{-3}{2}$.
But x must be positive so $x=2$
b) $\log (x+5)+\log (2 x-3)=\log (x+2)+1$.
$\log \left(\frac{(x+5)(2 x-3)}{x+2}\right)=1 \quad \Longrightarrow \quad \frac{(x+5)(2 x-3)}{x+2}=10$
$2 x^{2}+10 x-3 x-15=10 x+20 \Longrightarrow 2 x^{2}-3 x-35=0 \Longrightarrow(2 x+7)(x-5)=0$
Then $x=5$ and $x=\frac{-7}{2}$ but $x=\frac{-7}{2}$ is not in the domain of $\log (2 x-3)$ so the only solution is $x=5$.

